\qquad Date \qquad Class \qquad

Skill: Experimental and Theoretical Probability

Mirga and José played a game and made this table.

1. Find the experimental probability that Mirga wins.

Mirga wins WH WH WH W W I José wins 快 I
Times played WH W W W W W W W I
2. Find the experimental probability that José wins.
3. Do you think the game is fair? Explain.

The table below shows the results of spinning a spinner 15 times. Find each experimental probability.

Trial	1	2	3	4	5	6	7	8
Outcome	blue	yellow	red	blue	green	red	yellow	blue

Trial	9	10	11	12	13	14	15
Outcome	blue	green	red	blue	blue	green	red

4. $P($ red $)$
5. P (yellow)
6. P (green)
\qquad Date \qquad Class \qquad

Skill: Experimental and Theoretical Probability (cont.)

You spin a spinner with 10 sections numbered 1 through 10. Each outcome (section) is equally likely. Find the probabilities below as a fraction, decimal, and percent.
7. $P(9)$
8. $P($ even $)$
9. P (number
10. $P($ multiple of 4$)$ greater than 0)

There are eight blue marbles, nine orange marbles, and six yellow marbles in a bag. You draw one marble. Find each probability.
11. P (blue marble)
12. P (yellow marble)
13. What marble could you add or remove so that the probability of drawing a blue marble is $\frac{1}{3}$?

